Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Geohealth ; 7(3): e2022GH000674, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36968153

RESUMEN

Urban agriculture is emerging as a method to improve food security and public health in cities across the United States. However, an increased risk of exposure to heavy metals and metalloids (HMM) exists through interaction with contaminated soil. Community-engaged research (CEnR) is one method that can promote the inclusion of all partners when studying exposures such as HMM in soil. Researchers and community gardeners co-designed this study to measure the concentrations of lead (Pb), using X-Ray Fluorescence (XRF) verified with Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) in soils from 19 urban agricultural and residential sites in the Westside of Atlanta and three rural sites in Georgia. Seventeen other HMM were measured but not included in this study, because they did not pose risks to the community comparable to elevated Pb levels. Pb concentrations were compared to the Environmental Protection Agency (EPA)'s regional screening levels (RSLs) for residential soil and the University of Georgia (UGA) extension service's low-risk levels (LRLs) for agriculture. Soils from the majority of sites had levels below EPA RSLs for Pb, yet above the UGA LRL. However, soil Pb concentrations were three times higher than the EPA RSL on some sites that contained metal refining waste or slag. Our findings led to direct action by local and federal government agencies to initiate the cleanup of slag residue. Studies involving exposures to communities should engage those affected throughout the process for maximum impact.

2.
Artículo en Inglés | MEDLINE | ID: mdl-32244979

RESUMEN

Urban agriculture and gardening provide many health benefits, but the soil is sometimes at risk of heavy metal and metalloid (HMM) contamination. HMM, such as lead and arsenic, can result in adverse health effects for humans. Gardeners may face exposure to these contaminants because of their regular contact with soil and consumption of produce grown in urban areas. However, there is a lack of research regarding whether differential exposure to HMM may be attributed to differential knowledge of exposure sources. In 2018, industrial slag and hazardous levels of soil contamination were detected in West Atlanta. We conducted community-engaged research through surveys and follow-up interviews to understand awareness of slag, HMM in soil, and potential remediation options. Home gardeners were more likely to recognize HMM health effects and to cite health as a significant benefit of gardening than community gardeners. In terms of knowledge, participants were concerned about the potential health effects of contaminants in soil yet unconcerned with produce in their gardens. Gardeners' knowledge on sources of HMM exposure and methods for remediation were low and varied based on racial group.


Asunto(s)
Agricultura , Exposición a Riesgos Ambientales , Conocimientos, Actitudes y Práctica en Salud , Metales Pesados , Contaminantes del Suelo , Población Urbana , Restauración y Remediación Ambiental , Femenino , Jardinería , Humanos , Masculino , Metales Pesados/análisis , Metales Pesados/toxicidad , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...